Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.373
Filtrar
1.
Sports Med Open ; 10(1): 36, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600291

RESUMO

BACKGROUND: Daily nutrition plays an important role in supporting training adaptions and endurance performance. The objective of this 10-week study was to investigate the consequences of varying carbohydrate consumption and the glycaemic index (GI) together with an endurance training regimen on substrate oxidation, muscle energy storage and endurance performance under free-living conditions. Sixty-five moderately trained healthy men (29 ± 4 years; VO2 peak 55 ± 8 mL min-1 kg-1) were randomized to one of three different nutritional regimes (LOW-GI: 50-60% CHO with ≥ 65% of these CHO with GI < 50 per day, n = 24; HIGH-GI: 50-60% CHO with ≥ 65% CHO with GI > 70 per day, n = 20; LCHF: ≤ 50 g CHO daily, n = 21). Metabolic alterations and performance were assessed at baseline (T0) and after 10 weeks (T10) during a graded exercise treadmill test. Additionally, a 5 km time trial on a 400-m outdoor track was performed and muscle glycogen was measured by magnet resonance spectroscopy. RESULTS: Total fat oxidation expressed as area under the curve (AUC) during the graded exercise test increased in LCHF (1.3 ± 2.4 g min-1 × km h-1, p < 0.001), remained unchanged in LOW-GI (p > 0.05) and decreased in HIGH-GI (- 1.7 ± 1.5 g min-1 × km h-1, p < 0.001). After the intervention, LOW-GI (- 0.4 ± 0.5 mmol L-1 × km h-1, p < 0.001) and LCHF (- 0.8 ± 0.7 mmol L-1 × km h-1, p < 0.001) showed significantly lower AUC of blood lactate concentrations. Peak running speed increased in LOW-GI (T0: 4.3 ± 0.4 vs. T10: 4.5 ± 0.3 m s-1, p < 0.001) and HIGH-GI (T0: 4.4 ± 0.5 vs. T10: 4.6 ± 0.4 m s-1), while no improvement was observed in LCHF. Yet, time trial performance improved significantly in all groups. Muscle glycogen content increased for participants in HIGH-GI (T0: 97.3 ± 18.5 vs. T10: 144.5 ± 39.8 mmol L wet-tissue-1, p = 0.027) and remained unchanged in the LOW-GI and the LCHF group. At the last examination, muscle glycogen concentration was significantly higher in LOW-GI compared to LCHF (p = 0.014). CONCLUSION: Changes in fat oxidation were only present in LCHF, however, lower lactate concentrations in LOW-GI resulted in changes indicating an improved substrate metabolism. Compared to a LCHF diet, changes in peak running speed, and muscle glycogen stores were superior in LOW- and HIGH-GI diets. The low GI diet seems to have an influence on substrate metabolism without compromising performance at higher intensities, suggesting that a high-carbohydrate diet with a low GI is a viable alternative to a LCHF or a high GI diet. TRIAL REGISTRATION: Clinical Trials, NCT05241730. https://clinicaltrials.gov/study/NCT05241730 . Registered 25 January 2021.

2.
Synthesis (Stuttg) ; 56(7): 1147-1156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655286

RESUMO

Superarmed glycosyl donors have higher reactivity compared to their perbenzylated armed counterparts. Generally, the 2-O- benzoyl-3,4,6-tri-O-benzyl protecting group pattern gives rise to increased reactivity due to an O-2/O-5 cooperative effect. Despite having a high reactivity profile and applicability in many expeditious strategies for glycan synthesis, regioselective introduction of the superarming protecting group pattern is tedious for most sugar series. Reported herein is a streamlined synthetic route to yield superarmed glycosyl donors of the d-gluco and d-galacto series equipped with an ethylthio, phenylthio, p-tolylthio, benzoxazol-2-ylthio, O-allyl, or O-pentenyl anomeric leaving group. This streamlined approach was made possible due to the refinement of the oxidative thioglycosylation reaction of the respective glucal and galactal precursors. The applicability of this approach to the direct formation of disaccharides is also showcased.

3.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655926

RESUMO

The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.


Deciding what and how much to eat is a complex biological process which involves balancing many types of information such as the levels of internal energy storage, the amount of food previously available in the environment, the perceived value of certain food items, and how these are remembered. At the molecular level, food contains carbohydrates that are broken down to produce glucose, which is then delivered to cells under the control of a hormone called insulin. There, glucose molecules are either immediately used or stored as glycogen until needed. Insulin signalling is also known to interact with the brain's decision-making systems that control eating behaviors; however, how our brains balance food intake with energy storage is poorly understood. Berger et al. set out to investigate this question using fruit flies as an experimental model. These insects also produce insulin-like molecules which help to relay information about glycogen levels to the brain's decision-making system. In particular, these signals reach a population of neurons that produce a messenger known as octopamine similar to the human noradrenaline, which helps regulate how much the flies find consuming certain types of foods rewarding. Berger et al. were able to investigate the role of octopamine in helping to integrate information about internal and external resource levels, memory formation and the evaluation of different food types. When the insects were fed normally, increased glycogen levels led to foods rich in carbohydrates being rated as less rewarding by the decision-making cells, and therefore being consumed less. Memories related to food intake were also short-lived ­ in other words, long-term 'food memory' was suppressed, re-setting the whole system after every meal. In contrast, long periods of starvation in insects with high carbohydrates resources produced a stable, long-term memory of food and hunger which persisted even after the flies had fed again. This experience also changed their food rating system, with highly nutritious foods no longer being perceived as sufficiently rewarding. As a result, the flies overate. This study sheds new light on the mechanisms our bodies may use to maintain energy reserves when food is limited. The persistence of 'food memory' after long periods of starvation may also explain why losing weight is difficult, especially during restrictive diets. In the future, Berger et al. hope that this knowledge will contribute to better strategies for weight management.


Assuntos
Drosophila melanogaster , Metabolismo Energético , Octopamina , Animais , Drosophila melanogaster/fisiologia , Octopamina/metabolismo , Memória/fisiologia , Glicogênio/metabolismo , Inanição , Sacarose/metabolismo , Memória de Longo Prazo/fisiologia , Ingestão de Alimentos/fisiologia
4.
Biology (Basel) ; 13(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38666823

RESUMO

Rhododendron chrysanthum Pall. (R. chrysanthum), a plant with UV-B resistance mechanisms that can adapt to alpine environments, has gained attention as an important plant resource with the ability to cope with UV-B stress. In this experiment, R. chrysanthums derived from the same origin were migrated to different culture environments (artificial climate chamber and intelligent artificial incubator) to obtain two forms of R. chrysanthum. After UV-B irradiation, 404 metabolites and 93,034 unigenes were detected. Twenty-six of these different metabolites were classified as UV-B-responsive metabolites. Glyceric acid is used as a potential UV-B stress biomarker. The domesticated Rhododendron chrysanthum Pall. had high amino acid and SOD contents. The study shows that the domesticated Rhododendron chrysanthum Pall. has significant UV-B resistance. The transcriptomics results show that the trends of DEGs after UV-B radiation were similar for both forms of R. chrysanthum: cellular process and metabolic process accounted for a higher proportion in biological processes, cellular anatomical entity accounted for the highest proportion in the cellular component, and catalytic activity and binding accounted for the highest proportion in the molecular function category. Through comparative study, the forms of metabolites resistant to UV-B stress in plants can be reflected, and UV-B radiation absorption complexes can be screened for application in future specific practices. Moreover, by comparing the differences in response to UV-B stress between the two forms of R. chrysanthum, references can be provided for cultivating domesticated plants with UV-B stress resistance characteristics. Research on the complex mechanism of plant adaptation to UV-B will be aided by these results.

5.
J Am Chem Soc ; 146(15): 10608-10620, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564319

RESUMO

The use of noncovalent interactions (NCIs) has received significant attention as a pivotal synthetic handle. Recently, the exploitation of unconventional NCIs has gained considerable traction in challenging reaction manifolds such as glycosylation due to their capacity to facilitate entry into difficult-to-access sugars and glycomimetics. While investigations involving oxacyclic pyrano- or furanoside scaffolds are relatively common, methods that allow the selective synthesis of biologically important iminosugars are comparatively rare. Here, we report the capacity of a phosphonochalcogenide (PCH) to catalyze the stereoselective α-iminoglycosylation of iminoglycals with a wide array of glycosyl acceptors with remarkable protecting group tolerance. Mechanistic studies have illuminated the counterintuitive role of the catalyst in serially activating both the glycosyl donor and acceptor in the up/downstream stages of the reaction through chalcogen bonding (ChB). The dynamic interaction of chalcogens with substrates opens up new mechanistic opportunities based on iterative ChB catalyst engagement and disengagement in multiple elementary steps.

6.
Int J Biol Macromol ; 267(Pt 2): 131441, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583848

RESUMO

The thermal stability of polyurethanes, known for its limitations, was addressed in this research by seeking improvement through the introduction of carbohydrate-based chain extenders. In this research paper, we systematically sought to improve the thermal resistance of polyurethanes by incorporating carboxymethyl cellulose and chitosan, representing a pioneering application of the mixture design approach in their preparation. In this synthesis, hydroxyl-terminated polybutadiene and isophorone diisocyanate (IPDI) were reacted to prepare -NCO terminated prepolymer, which was subsequently reacted with varying mole ratios of CMC and CSN to develop a series of five PU samples. The prepared PU samples were characterized using the Fourier-transformed infrared spectroscopic technique. Thermal pyrolysis of PU samples was examined using thermal gravimetric analysis (TGA). It was observed that, among all the samples, PUS-3 showed remarkable thermal stability over a wide temperature range. A comprehensive statistical analysis was conducted to substantiate the experimental findings. It was estimated that CMC and CSN significantly enhance the thermal stability of the samples when involved in an interaction fashion. The ANOVA Table for the mixture design demonstrates that over 90 % of the total variation in thermal stability is explained by the mixture model across a wide temperature range. Moreover, PSU-3 exhibited 4 % more thermal stability over a wide range of temperatures on average, as compared to contemporary samples.

7.
Plant Cell Environ ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644635

RESUMO

Crown removal revitalises sand-fixing shrubs that show declining vigour with age in drought-prone environments; however, the underlying mechanisms are poorly understood. Here, we addressed this knowledge gap by comparing the growth performance, xylem hydraulics and plant carbon economy across different plant ages (10, 21 and 33 years) and treatments (control and crown removal) using a representative sand-fixing shrub (Caragana microphylla Lam.) in northern China. We found that growth decline with plant age was accompanied by simultaneous decreases in soil moisture, plant hydraulic efficiency and photosynthetic capacity, suggesting that these interconnected changes in plant water relations and carbon economy were responsible for this decline. Following crown removal, quick resprouting, involving remobilisation of root nonstructural carbohydrate reserves, contributed to the reconstruction of an efficient hydraulic system and improved plant carbon status, but this became less effective in older shrubs. These age-dependent effects of carbon economy and hydraulics on plant growth vigour provide a mechanistic explanation for the age-related decline and revitalisation of sand-fixing shrubs. This understanding is crucial for the development of suitable management strategies for shrub plantations constructed with species having the resprouting ability and contributes to the sustainability of ecological restoration projects in water-limited sandy lands.

8.
Int J Dent Hyg ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575751

RESUMO

OBJECTIVES: This study aims to evaluate the effect of prolonged hospitalization on the maintenance of dental health and to assess the nursing staff's approach to addressing these concerns. METHODS: A survey questionnaire explored changes in the routine dental care of patients hospitalized for over a month. The involvement of nursing staff in addressing dental care was also evaluated. RESULTS: Fifty adult patients aged 18-89 years (mean age 62.4 ± 20.54 years), 27 (54%) males, completed the survey. During hospitalization (mean 58.59 ± 38.63 days) 26% and 18%, increased consumption of sweets and sugary beverages, between meals, respectively; 26% and 20% of the patients reduced the frequency of tooth brushing in the morning and in the evening, respectively, and 42.2% of them, reduced the quality of their toothbrushing during hospitalization. Nevertheless, 95.9% and 93.9% of them were never instructed during hospitalization to limit their consumption of sweets and sugary beverages and 83.3% and 62.5% of them had never been reminded or offered assistance during hospitalization in performing toothbrushing, respectively. The lower frequency of morning toothbrushing was significantly correlated with a lack of nurses' assistance (p = 0.004). In contrast, 62.6% reported they were reminded every day to shower. Patients in the rehabilitation and geriatrics departments reported a greater need for a brush/toothpaste (p < 0.0001) and assistance in toothbrushing (p < 0.0001). CONCLUSIONS: Prolonged hospitalization leads to significant deterioration in inpatients' dental health maintenance. Raising awareness among nurses regarding their inpatient's oral health maintenance is warranted. Providing patients with toothbrushes, toothpaste and educational materials upon hospitalization is recommended.

9.
Lipids Health Dis ; 23(1): 99, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575962

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is an emerging threat for public health with diet being a major risk factor in disease development and progression. However, the effects of habitual food consumption on fatty liver are still inconclusive as well as the proposed role of the individuals' metabolic profiles. Therefore, the aim of our study is to examine the associations between diet and NAFLD with an emphasis on the influence of specific metabotypes in the general population. METHODS: A total of 689 participants (304 men and 385 women) of the KORA-Fit (S4) survey, a follow-up study of the population-based KORA cohort study running in the Region of Augsburg, Germany, were included in this analysis. Dietary information was derived from repeated 24-h food lists and a food frequency questionnaire. The intake of energy and energy-providing nutrients were calculated using the national food composition database. The presence of fatty liver was quantified by the fatty liver index (FLI), and metabotypes were calculated using K-means clustering. Multivariable linear regression models were used for the analysis of habitual food groups and FLI; for the evaluation of macronutrients, energy substitution models were applied. RESULTS: A higher consumption of nuts and whole grains, and a better diet quality (according to Alternate Healthy Eating Index and Mediterranean Diet Score) were associated with lower FLI values, while the intake of soft drinks, meat, fish and eggs were associated with a higher FLI. The isocaloric substitution of carbohydrates with polyunsaturated fatty acids was associated with a decreased FLI, while substitution with monounsaturated fatty acids and protein showed increased FLI. Statistically significant interactions with the metabotype were observed for most food groups. CONCLUSION: The consumption of plant-based food groups, including nuts and whole grains, and diet quality, were associated with lower FLI values, whereas the intake of soft drinks and products of animal origin (meat, fish, eggs) were associated with a higher FLI. The observed statistically significant interactions with the metabotype for most food groups could help to develop targeted prevention strategies on a population-based level if confirmed in independent prospective studies.


Assuntos
Dieta Mediterrânea , Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Humanos , Feminino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Estudos de Coortes , Seguimentos , Estudos Prospectivos , Dieta , Ingestão de Alimentos
10.
Curr Opin Chem Biol ; 80: 102453, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582017

RESUMO

Bacterial cells are covered by a complex carbohydrate coat of armor that allows bacteria to thrive in a range of environments. As a testament to the importance of bacterial glycans, effective and heavily utilized antibiotics including penicillin and vancomycin target and disrupt the bacterial glycocalyx. Despite their importance, the study of bacterial glycans lags far behind their eukaryotic counterparts. Bacterial cells use a large palette of monosaccharides to craft glycans, leading to molecules that are significantly more complex than eukaryotic glycans and that are refractory to study. Fortunately, chemical tools designed to probe bacterial glycans have yielded insights into these molecules, their structures, their biosynthesis, and their functions.

11.
Insect Biochem Mol Biol ; : 104128, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38657707

RESUMO

Social wasps exhibit a unique nutritional cycle in which adults feed larvae with prey, and larvae provide adults with larval secretions (LS). LS serves as a vital nutritional source for adults, contributing to the colony's health and reproductive success. The LS nutrient composition has been previously reported in various wasp species, yet these analyses focused solely on worker-destined larvae, overlooking the potential caste designation effects on LS composition. Using metabolomics techniques, we analysed and compared the metabolite and nutrient composition in LS of queen- and worker-destined larvae of the Oriental hornet. We found that queen-destined LS (QLS) contain greater amounts of most metabolites, including amino acids, and smaller amounts of sugars compared to worker-destined LS (WLS). The amino acid-to-sugar ratio in QLS was approximately tenfold higher than in WLS. Thus, as the colony transitions from the production of workers to the production of reproductives, it gradually experiences a nutritional shift that may influence the behaviour and physiology of the adult nest population. This caste-specific metabolite profile and nutrient composition of LS reflect the differences in the diet and physiological requirements of worker- and queen-destined larvae and may play a critical role in caste determination in social wasps.

12.
Angew Chem Int Ed Engl ; : e202405297, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651620

RESUMO

Bacterial cell-surface polysaccharides are involved in various biological processes and have attracted widespread attention as potential targets for developing carbohydrate-based drugs. However, the accessibility of structurally well-defined polysaccharide or related active oligosaccharide domains remains challenging. Herein, we describe an efficiently stereocontrolled approach for the first total synthesis of a unique pentasaccharide repeating unit containing four difficult-to-construct 1,2-cis-glycosidic linkages from the cell wall polysaccharide of Cutibacterium acnes C7. The features of our approach include: 1) acceptor-reactivity-controlled glycosylation to stereoselectively construct   two challenging rare 1,2-cis-ManA2,3(NAc)2 (ß-2,3-diacetamido-2,3-dideoxymannuronic acid) linkages, 2) combination use of 6-O-tert-butyldiphenylsilyl (6-O-TBDPS)-mediated steric shielding effect and ether solvent effect to stereoselectively install a 1,2-cis-glucosidic linkage, 3) bulky 4,6-di-O-tert-butylsilylene (DTBS)-directed glycosylation to stereospecifically construct a 1,2-cis-galactosidic linkage, 4) stereoconvergent [2+2+1] and one-pot chemoselective glycosylation to rapidly assemble the target pentasaccharide. Immunological activity tests suggest that the pentasaccharide can induce the production of proinflammatory cytokine TNF-α in a dose-dependent manner.

13.
Neurogastroenterol Motil ; : e14795, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651659

RESUMO

BACKGROUND: The association between dietary protein intake and constipation remains inconclusive. The aim of this study was to investigate whether dietary protein intake is associated with constipation. METHODS: This cross-sectional study included 13,941 adults from the 2005 to 2010 National Health and Nutrition Examination Survey. A weighted logistic regression analysis was used to control for confounding factors. In addition, weighted interaction and stratified analyses were conducted to ascertain the potential modifying factors. RESULTS: The prevalence of constipation was 7.5% when constipation was defined by stool consistency and 3.5% when constipation was defined by stool frequency. After adjusting for covariates, an increase in dietary protein intake of 10 g was not associated with constipation, as defined by stool frequency (OR = 0.94, 95% CI = 0.54, 1.62) or stool consistency (OR = 1.02, 95% CI = 0.75, 1.39). Subgroup analyses revealed that dietary protein intake was associated with an increase in constipation defined by stool consistency risk in participants who consumed a low amount of carbohydrates (OR = 1.08, 95% CI = 1.02-1.14 for every 10-g increase in protein intake), but a decrease in risk in participants in the moderate-carbohydrate group (OR = 0.94, 95% CI = 0.89-0.99 for every 10-g increase in protein intake), suggesting a significant interaction (p = 0.001). CONCLUSION & INFERENCES: Dietary protein intake is not associated with stool consistency or frequency-defined constipation. However, the association between dietary protein intake and constipation defined by stool consistency in participants with a low carbohydrate intake differed from that in participants with a moderate carbohydrate intake.

14.
J Exp Bot ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613495

RESUMO

Knowledge of the physiological mechanisms underlying species vulnerability to drought is critical to better understand patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment on 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought. We further explored the importance of water- and carbon-use strategies in relation to drought-survival through a modelling approach. Hydraulic strategies varied considerably across species with a continuum between dehydration- tolerance and -avoidance. During dehydration leading to hydraulic failure and irrespective of hydraulic strategies, species showed strong declines in whole-plant starch concentrations and a maintenance or even an increase in soluble sugar concentrations potentially favouring osmotic adjustments. Residual water losses mediated the trade-off between time to hydraulic failure and growth, suggesting that it is linked to the 'fast-slow' continuum of plant performances and that dehydration avoidance is an effective drought-survival strategy at the sapling stage. Further investigations on residual water losses may be key to understanding the response of tropical rainforest tree communities to climate change.

15.
J Anim Sci Technol ; 66(2): 438-441, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38628691

RESUMO

The Enterococcus faecium (E. faecium) strain AK_C_05 was isolated from cheonggukjang, the Korean traditional food, collected from a local market in South Korea. In this report, we presented the complete genome sequence of E. faecium strain AK_C_05. The genome of E. faecium strain AK_C_05 genome consisted of one circular chromosome (2,691,319 bp) with a guanine + cytosine (GC) content of 38.3% and one circular plasmid (177,732 bp) with a GC content of 35.48%. The Annotation results revealed 2,827 protein-coding sequences (CDSs), 18 rRNAs, and 68 tRNA genes. It possesses genes, which encodes enzymes such as alpha-galactosidase (EC 3.2.1.22), beta-glucosidase (EC 3.2.1.21) and alpha-L-arabinofuranosidase (EC 3.2.1.55) enabling efficient utilization of carbohydrates. Based on Clusters of Orthologous Groups analysis, E. faecium strain AK_C_05 showed specialization in carbohydrate transport and metabolism indicating the ability to generate energy using a variety of carbohydrates.

16.
Sci Total Environ ; 927: 172164, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580112

RESUMO

Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.


Assuntos
Isótopos de Carbono , Carbono , Isótopos de Nitrogênio , Nitrogênio , Solo , Árvores , Nitrogênio/metabolismo , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Carbono/metabolismo , Solo/química , Picea , Especificidade da Espécie , Abies , Acer , Raízes de Plantas/metabolismo , Fertilizantes
17.
Heliyon ; 10(7): e28402, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596090

RESUMO

Purpose of this study is to explore the extraction of potentially valuable cosmetic ingredients from rice crop residues, aiming to mitigate their environmental impact. Methods: We employed AOAC methods to analyze the fat, protein, ash, fiber, soluble, and insoluble carbohydrate content in these residues. To identify sugars rich in galactose and acidic sugars, a total soluble carbohydrate extraction was performed. Cellulose, as part of the insoluble carbohydrates, was isolated through alkaline and acid hydrolysis, while sodium silicate was derived from the ash. Characterization of insoluble cellulose and silicate involved techniques like FTIR, DSC, PXRD, microphotography, porosity assessments, and water absorption studies. For proteins, alkaline solubilization and precipitation at the isoelectric point were utilized, with quantification via BCA and amino acid profiling through gas chromatography. Evaluation of radical scavenging capacity using DPPH led to the calculation of apparent molecular weight via SDS-PAGE. Results: The results revealed low levels of gum, mucilage, and pectin in both residues, contrasting with a high concentration of insoluble polysaccharides. Among these, Iß cellulose displayed potential attributes for cosmetic applications due to its oil and water adsorption characteristics. However, silicates obtained from the ashes did not exhibit direct use potential. In terms of protein extraction, we observed antioxidant properties, with enhanced performance through enzymatic hydrolysis, achieving a hydrolysis degree of 30.41% and a DPPH radical absorption rate exceeding 70%. Conclusion: Rice residues, particularly husk and straw, shown valuable substances suitable for potential cosmetic applications, encompassing cellulose, hydrolyzed proteins, and ash as a silicate precursor.

18.
Nutr Res Rev ; : 1-47, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602133

RESUMO

Restriction of dietary carbohydrates, fat, and/or protein is often used to reduce body weight and/or treat (metabolic) diseases. Since diet is a key modulator of the human gut microbiome, which plays an important role in health and disease, this review aims to provide an overview of current knowledge of the effects of macronutrient-restricted diets on gut microbial composition and metabolites. A structured search strategy was performed in several databases. After screening for in-and exclusion criteria, 36 articles could be included. Data are included in the results only when supported by at least three independent studies to enhance the reliability of our conclusions. Low-carbohydrate (<30 energy%) diets tended to induce a decrease in the relative abundance of several health-promoting bacteria, such as Bifidobacterium, as well as a reduction in short-chain fatty acid (SCFA) levels in faeces. In contrast, low-fat diets (<30 energy%) increased alpha diversity, faecal SCFA levels, and abundance of some beneficial bacteria, including F. prausnitzii. There was insufficient data to draw conclusions concerning the effects of low-protein (<10 energy%) diets on gut microbiota. Although the data of included studies unveils possible benefits of low-fat and potential drawbacks of low-carbohydrate diets for human gut microbiota, the diversity in study designs made it difficult to draw firm conclusions. Using a more uniform methodology in design, sample processing and sharing raw sequence data could foster our understanding of the effects of macronutrient restriction on gut microbiota composition and metabolic dynamics relevant to health. This systematic review was registered at https://www.crd.york.ac.uk/prospero as CRD42020156929.

19.
Tree Physiol ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602710

RESUMO

Nonstructural carbohydrates (NSC) are essential for tree growth and adaptation, yet our understanding of the seasonal storage and mobilization dynamics of whole-tree NSC is still limited, especially when tree functional types are involved. Here, Quercus acutissima Carruth. and Pinus massoniana Lamb. with distinct life-history traits (i.e., a deciduous broadleaf species vs. an evergreen coniferous species) were studied to assess the size and seasonal fluctuations of organ and whole-tree NSC pools with a focus on comparing differences in carbon resource mobilization patterns between the two species. We sampled the organs (leaf, branch, stem, and root) of the target trees repeatedly over four seasons of the year. Then, NSC concentrations in each organ were paired with biomass estimates from the allometric model to generate whole-tree NSC pools. The seasonal dynamics of the whole-tree NSC of Q. acutissima and P. massoniana reached the peak in autumn and summer, respectively. The starch pools of the two species were supplemented in the growing season while the soluble sugar pools were the largest in the dormant season. Seasonal dynamics of organ-level NSC concentrations and pools were affected by organ type and tree species, with above-ground organs generally increasing during the growing season and P. massoniana roots decreasing during the growing season. In addition, the whole-tree NSC pools of P. massoniana were larger but Q. acutissima showed larger seasonal fluctuations, indicating that larger storage was not associated with more pronounced seasonal fluctuations. We also found that the branch and root were the most dynamic organs of Q. acutissima and P. massoniana, respectively, and were the major suppliers of NSC to support tree growth activities. These results provide fundamental insights into the dynamics and mobilization patterns of NSC at the whole-tree level, and have important implications for investigating environmental adaptions of different tree functional types.

20.
Carbohydr Polym ; 335: 122113, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616083

RESUMO

Starch, lipids, and proteins are essential biological macromolecules that play a crucial role in providing energy and nutrition to our bodies. Interactions between these macromolecules have been shown to impact starch digestibility. Understanding and controlling starch digestibility is a key area of research. Investigating the mechanisms behind the interactions of these three components and their influence on starch digestibility is of significant practical importance. Moreover, these interactions can result in the formation of resistant starch, which can be fermented by gut microbiota in the colon, leading to various health benefits. While current research has predominantly focused on the digestive properties of starch in the small intestine, there is a notable gap in understanding the colonic microbial fermentation phase of resistant starch. The benefits of fermentation of resistant starch in the colon may outweigh its glucose-lowering effect in the small intestine. Thus, it is crucial to study the fermentation behavior of resistant starch in the colon. This paper investigates the impact of interactions among starch, lipids, and proteins on starch digestion, with a specific focus on the fermentation phase of indigestible carbohydrates in the colon. Furthermore, valuable insights are offered for guiding future research endeavors.


Assuntos
Microbiota , Amido , Amido Resistente , Fermentação , Lipídeos , Colo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...